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Abstract This work aims to develop a new High Dimensional Model Representa-
tion (HDMR) based method which can construct an analytical structure for a given
multivariate data modelling problem. Modelling multivariate data through a divide-
and-conquer method stands for multivariate data partitioning process in which we
deal with a number of less variate data sets instead of a single N dimensional prob-
lem. Generalized HDMR is one of these methods used to model a multivariate data
set which has a number of scattered nodes with associated function values. However,
Generalized HDMR includes a linear equation system with huge number of unknowns
and equations to be solved. This equation sometimes has linearly dependent equations
in it and this is an undesirable situation. This work offers a new method named Piece-
wise Generalized HDMR method which bypasses this disadvantage as well as reducing
the mathematical complexity and CPU time needed to complete the algorithm of the
previous method. Our new method splits the given problem domain into subdomains,
applies the Generalized HDMR philosophy to each subdomain and superpositions the
information coming from these subdomains. The algorithm of this new method and a
number of numerical implementations are given in this paper.
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1 Introduction

High Dimensional Model Representation (HDMR) is a divide-and-conquer method
and was first proposed by I. M. Sobol in 1993 [1]. HDMR has a finite expansion includ-
ing the summation of a constant, N number of univariate components, N (N − 1)/2
number of bivariate components and so on which has a total of 2N components. In
literature, scientists usually use the very first few components, going at most to the
bivariate ones to approximately represent a multivariate problem in terms of a number
of less-variate ones.

After Sobol’s work, H. Rabitz and his group have developed HDMR based meth-
ods and used these methods in different areas of engineering problems [2–4]. During
the same time period, M. Demiralp and his group worked on different problems and
developed many HDMR based methods for solving these problems [5–10]. Many
other scientists from different research areas work on HDMR and use it for various
scientific problems [11–20].

This representation technique is used as a data partitioning method in multivariate
data modelling problems also [21]. When an N dimensional data modelling problem
(N > 3) is given and the purpose is to construct an analytical structure for that prob-
lem, HDMR allows us to partition the given N dimensional data set into a constant,
N number of univariate data sets and so on. The data partitioning process through an
HDMR based method provides us with a method to deal with a number of less-variate
interpolations such as univariate ones instead of an N dimensional interpolation and
finally to determine the target analytical structure. This philosophy can be applied
to any problem of mathematics, chemistry, physics or of any area in which a data
partitioning process is needed to model the real life problems.

Generalized HDMR method [22] is based on HDMR philosophy. HDMR based
methods use a product type weight to obtain a representation for the given multivar-
iate problem while the Generalized HDMR method uses a general weight function.
The product type weight inside the HDMR algorithm allows us only to apply this
method to the problems having orthogonal geometry in which the function values are
known at all nodes of the whole problem domain [21]. The reason for a general type
weight usage is to bypass the restrictions of an orthogonal geometry on the algorithm
since a multivariate data modelling problem has a multivariate data set as a train-
ing data set which has a number of nodes with an associated function value and the
total number of these nodes are very small part of the whole domain. That is, this
type of a problem has a nonorthogonal geometry. Hence, we need a general weight
in our algorithm and the Generalized HDMR method allows us to model these types
of problems [22]. However, we know that at most univariate approximation through
Generalized HDMR can be obtained for the given multivariate data modelling prob-
lem since only the general structure of univariate Generalized HDMR components
are given in literature and we know that it is not easy to develop a general structure
for the higher variate components since that structure will have an equation system
of integral equations [22]. However, the general structure of univariate Generalized
HDMR components include a system of linear equations in which the unknowns are
the univariate components of the multivariate function under consideration. Finding
a unique solution for this type of a system is not usually easy and sometimes it is
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not possible to get a unique solution because of the number of linearly dependent
equations included by the system [22].

The main purpose of this work is to bypass the disadvantage of solving a system
of linear equations and to determine an approximation through Generalized HDMR
which has better presentation than the classical Generalized HDMR method for a mul-
tivariate data modelling problem. The proposed method of this paper, which is named
as Piecewise Generalized HDMR, splits the given N dimensional domain into many N
dimensional subdomains and then evaluates the constant Generalized HDMR compo-
nent in each subdomain. Finally, an analytical structure is determined approximately
by using the coordinates of each subdomain with the associated constant component
value through a multivariate interpolation technique. The very beginning steps of such
an algorithm are given for univariate data modelling problems in [23].

Another HDMR based data modelling method is Indexing HDMR [24,25]. This
method constructs an index space to obtain an orthogonal structure to have the ability
of using the plain HDMR method directly for data partitioning purpose. The method
makes a one-to-one matching between the original problem domain and the index
space. To evaluate the unknown function values of the given problem, the method needs
to use similarity metrics to specify the location of each testing node in the index space
[24]. The only disadvantage of this method occurs when the similarity metric chosen
for the given problem fails and the appropriate index node for each testing node cannot
be determined as successfully as it is expected. The main advantage of the method
given in this work is the usage of the original problem domain in modelling process.

In this work, first the details of the Generalized HDMR method and data partitioning
procedure through this method are given very briefly in Sects. 2 and 3, respectively.
Section 4 covers our proposed method, Piecewise Generalized HDMR method, while
a numerical example with important steps of this new method is given in the com-
putational procedure section as Sect. 5 of the manuscript. A number of numerical
implementations to show the performance of the new method are designed in Sect. 6.
Finally, Sect. 7 is about the concluding remarks on the proposed method.

2 The generalized HDMR method

The expansion of HDMR for a multivariate function is given as follows [1]

f (x1, . . . , xN ) = f0 +
N∑

i1=1

fi1(xi1) +
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · ·

+ f1...N (x1, . . . , xN ) (1)

where N is the number of independent variables of the function under consideration.
The main task of the HDMR based algorithms is to uniquely determine the right hand
side components of this expansion. A product type weight function is needed for this
determination process in HDMR philosophy [5,21]. However, to have the ability of
dealing with scattered data, the Generalized HDMR method uses a general type weight
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with a product type auxiliary weight function [22]. In this sense, we need to obtain the
HDMR components of that general weight in order to evaluate the general structures
of the Generalized HDMR components of the multivariate function, f (x1, . . . , xN )

given in (1). For this purpose, the HDMR expansion of the general weight can be
written as follows

W (x1, . . . , xN ) = W0 +
N∑

i1=1

Wi1(xi1) +
N∑

i1,i2=1
i1<i2

Wi1i2(xi1 , xi2) + · · ·

+W1...N (x1, . . . , xN ) (2)

The following product type auxiliary weight function is defined to determine the com-
ponents of the general weight with normalization criterion which helps us to easily
determine these components [22]

Ω(x1, . . . , xN ) ≡
N∏

j=1

Ω j (x j ),

b j∫

a j

dx jΩ(x j ) = 1, 1 ≤ j ≤ N (3)

The following vanishing conditions are defined to obtain the HDMR components of
the general weight function

bi j∫

ai j

dxi j Ωi j (xi j )Wi1...ik

(
xi1 , . . . , xik

) = 0, 1 ≤ i j ≤ ik (4)

while the vanishing conditions to determine the components of the mutivariate func-
tion given in (1) are as follows [22]

b1∫

a1

dx1 · · ·
bN∫

aN

dxN Ω(x1, . . . , xN )W (x1, . . . , xN ) fi (xi ) = 0, 1 ≤ i ≤ N (5)

Using the general and auxiliary weight functions, the components of the multivariate
function can be determined by taking the vanishing conditions given in (4) and (5)
into consideration. For this purpose, the following operator is defined to obtain the
constant HDMR component

I0 F(x1, . . . , xN ) ≡
b1∫

a1

dx1Ω1(x1) · · ·
bN∫

aN

dxN Ω(xN )F(x1, . . . , xN ) (6)

while the univariate components can be obtained through the following operator
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Ii F(x1, . . . , xN ) ≡
b1∫

a1

dx1Ω1(x1) · · ·
bi−1∫

ai−1

dxi−1Ωi−1(xi−1)

×
bi+1∫

ai+1

dxi+1Ωi+1(xi+1) · · ·
bN∫

aN

dxN ΩN (xN )F(x1, . . . , xN ) (7)

where 1 ≤ i ≤ N and F(x1, . . . , xN ) is an arbitrary square integrable multivariate
function.

When we apply the operator I0 to both sides of the expansion given in (1) the
general relation is obtained as follows [22]

I0 [ W (x1, . . . , xN ) f (x1, . . . , xN ) ] = I0

⎡

⎣

⎛

⎝W0 +
N∑

i1=1

Wi1(xi1) + · · ·
⎞

⎠

×
⎛

⎝ f0 +
N∑

i1=1

fi1(xi1) + · · ·
⎞

⎠

⎤

⎦ (8)

Using the vanishing conditions given in (4) and (5), the constant component of the
HDMR expansion, which is f0, is evaluated as

I0 [ W (x1, . . . , xN ) f (x1, . . . , xN ) ] = W0 f0 (9)

and when the normalization criterion given in (3) is taken into consideration, we get
the result, W0 = 1. Hence, the general structure of the constant component is obtained
as follows [22]

f0 = I0 [ W (x1, . . . , xN ) f (x1, . . . , xN ) ] (10)

The same philosophy can be used to determine the univariate components. The opera-
tor Ii1 is applied to both sides of the HDMR expansion under the vanishing conditions
and the final relation for the univariate components is obtained as

Ii [ W (x1, . . . , xN ) f (x1, . . . , xN ) ]

= (1 + Wi (xi )) f0 + (1 + Wi (xi )) fi (xi )

+ (1 + Wi (xi ))

N∑

i1=1
i1 �=i

bi1∫

ai1

dxi1Ωi1(xi1)
(
1 + Wi1(xi1)

)
fi1(xi1)

+
N∑

i1,i2=1,i1<i2
(i1=i)∨(i2=i)

(1−δi1i )bi1+δi1i bi2∫

(1−δi1i )ai1+δi1i ai2

[ (
1 − δi1i

)
dxi1Ωi1(xi1) + δi1i dxi2Ωi2(xi2)

]

× [
Wi1i2(xi1 , xi2) − Wi1(xi1)Wi2(xi2)

] [ (
1 − δi1i

)
fi1(xi1) + δi1i fi2(xi2)

]

(11)
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where 1 ≤ i ≤ N and δi1i stands for Kronecker’s Delta [22]. This relation includes a
set of integral equations whose unknowns are the univariate HDMR components.

3 Data partitioning through generalized HDMR

Multivariate data with its associated function value can be defined as follows

d j ≡
(
ξ

( j)
1 , . . . , ξ

( j)
N , ϕ j

)
, ϕ j ≡ f (ξ

( j)
1 , . . . , ξ

( j)
N ) 1 ≤ j ≤ m (12)

where m is the total number of nodes of the training data set of the given problem.
Since we are dealing with multivariate data through an HDMR based method, to

partition the multivariate data set into less-variate data sets, we need to specify a
general weight function that can take only the given nodes and the associated func-
tion values into consideration. For this purpose, a weight function, which is a linear
combination of Dirac delta functions, is selected as [22]

W (x1, . . . , xN ) ≡
m∑

j=1

α jδ(x1 − ξ
( j)
1 ) · · · δ(xN − ξ

( j)
N ) (13)

where α j parameters are used for assigning a different importance to each individual
datum. To evaluate the value of each α j parameter, the normalization criterion given
in (3) is taken into consideration and finally the following relation is used

W0 = I0 [ W (x1, . . . , xN ) ] =
m∑

j=1

α jΩ j = 1 (14)

The product type auxiliary weight function will be used implicitly as given in (3). Using
the general weight given in (13) and the general structure for the constant component
given in (10), the constant component for the data partitioning process is obtained as
follows [22]

f0 =
m∑

j=1

α jΩ jϕ j , Ω j ≡
N∏

k=1

Ωk(ξ
( j)
k ), 1 ≤ j ≤ m (15)

To determine the univariate components under the weight function given in (13), we
obtain a system of linear equations instead of integral equations as given in (11) [22].
However, it is sometimes impossible to get a unique solution of such a system. In
addition, because there may sometimes exist huge number of unknowns as univariate
components and linear equations depending on the data set of the given problem, it
takes too much CPU time to have an acceptable solution. For these reasons, the main
purpose of this work is to bypass the univariate Generalized HDMR components and
to propose a new algorithm that uses only the constant Generalized HDMR compo-
nent to approximately construct an analytical structure for the given data modelling
problem.
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4 The Piecewise generalized HDMR method

This section includes the steps of the proposed method which is named as Piecewise
Generalized HDMR. This new method aims to use only the constant component of the
Generalized HDMR method to model the given multivariate problem. It is clear that a
single constant value obtained for the whole problem domain does not have the ability
of representing the analytical structure of the problem under consideration. Hence,
instead of using the whole domain, we split the N dimensional problem domain into
many N dimensional subdomains and evaluate a constant value for each subdomain
through the Generalized HDMR method. Using a multivariate interpolation technique
applied to these constant values to determine an approximate analytical structure for
the given multivariate problem, we will have an approximation as a result at the end.
This philosophy constructs the Piecewise Generalized HDMR method and bypasses
the disadvantages of solving a linear equation system coming from classical univar-
iate Generalized HDMR approximation in which there may exist linearly dependent
equations that cause having no unique solution.

A multivariate data modelling problem can be defined through a relation as given
in (12) and the domain of each independent variable of such a problem is described
as follows

xi ∈ [ai , bi ] , 1 ≤ i ≤ N (16)

where each a value stands for the minimum value and each b value stands for the
maximum value that the related independent variable can take.

To split the problem domain into subdomains first we split each interval, which
describes the domain of each independent variable, into subintervals

x (1)
i ∈

[
c(1)

i , c(2)
i

)
, x (2)

i ∈
[
c(2)

i , c(3)
i

)
, · · · , x (ti )

i ∈
[
c(ti )

i , c(ti +1)
i

]
,

c(1)
i ≡ ai , c(ti +1)

i ≡ bi , 1 ≤ i ≤ N (17)

where ti is the number of subintervals assigned to the i th independent variable, c
values are the lower and the upper bounds of each subinterval. The value of each ti
will be chosen by the user and the subintervals of each independent variable will be
equivalent subintervals in this work. Of course, the selection process of the number
of subintervals and the properties of these subintervals can be organized by using
different methods. These can be the subject of a future work.

To construct subdomains of the whole problem domain, the cartesian product of
the subintervals of the independent variables are used. This process can be expressed
as follows

D(s) ≡ x ( j1)
1 × x ( j2)

2 × · · · × x ( jN )
N ,

1 ≤ j1 ≤ t1, . . . , 1 ≤ jN ≤ tN , 1 ≤ s ≤ �, � ≡ t1 × · · · × tN (18)

where � is the total number of the subdomains.
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Next step is to define a product type auxiliary weight in each subdomain which sat-
isfies the criterion given in (3). In this work, the following constant auxiliary weight
function structure is selected

Ω(x1, . . . , xN )(s) =
N∏

j=1

1

ω
(s)
j − θ

(s)
j

, 1 ≤ s ≤ � (19)

where ω
(s)
j and θ

(s)
j stand for the upper and lower bounds of each independent variable

of each subdomain, respectively.
Then, using relation (14), the α values should be specified. Finally, a constant

Generalized HDMR component is obtained for each subdomain by using the relation
given in (15).

Now, it is time to construct an analytical structure through the subdomains to obtain
an approximate representation of the given multivariate data modelling problem. To
this end, the first step is to evaluate the arithmetic means of the value set of each
independent variable in each subdomain. This results in the following data sets

(
μ

(s)
1 , . . . , μ

(s)
N , f (s)

0

)
, 1 ≤ s ≤ � (20)

where f (1)
0 , f (2)

0 , . . . , f (�)
0 stand for the constant Generalized HDMR component of

the first subdomain, second subdomain and finally the last subdomain, respectively.
In addition, μ values are the arithmetic means of the values that each independent
variable can take in the corresponding subdomain. The final step of the method is
to determine an analytical structure through the abovementioned data sets. For this
purpose, one can use a multivariate polynomial interpolation method.

In this work, we use MuPAD [26], which is a multi-processing algebra data tool, to
develop the program codes needed for the calculations and the command interpolate
allows us to apply the multivariate polynomial interpolation technique to the data sets
given in (20).

5 Computational procedure

This section covers a numerical example to describe the important steps of the Piece-
wise Generalized HDMR method. For this purpose, the following testing function is
selected

f (x1, x2, x3) =
3∏

i=1

(1 + xi ) (21)

where there exist 3 independent variables. Let the domains of the independent variables
of the designed example be as follows

ξ1 ∈ {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0} , ξ2 ∈ {1.5, 2.5, 3.5, 4.5, 5.5} ,

ξ3 ∈ {1.3, 1.6, 2.2, 2.4, 2.9} (22)
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The number of nodes of the whole problem domain is 200 and it is assumed that the
function values at 130 nodes of 200 are known in our testing implementation. The
training and the testing data sets have 80 and 50 nodes, respectively.

When we apply the steps of the proposed method to the testing function within the
problem domain given in (21) and (22), the results obtained with the related steps are
itemized as follows:

– Specify the number of subintervals for each independent variable

t1 = 3, t2 = 2, t3 = 2 (23)

– Identify the subintervals of each independent variable’s domain

x (1)
1 ∈ [1.0, 3.33) , x (2)

1 ∈ [3.33, 5.67) , x (3)
1 ∈ [5.67, 8.0]

x (1)
2 ∈ [1.5, 3.5) , x (2)

2 ∈ [3.5, 5.5]

x (1)
3 ∈ [1.3, 2.1) , x (2)

3 ∈ [2.1, 2.9] (24)

– Construct the cartesian product of these subintervals. There should be 3×2×2 = 12
elements in this set. Each element stands for a subdomain of the given problem
domain.

D(1) ≡ [1.0, 3.33) × [1.5, 3.5) × [1.3, 2.1)

D(2) ≡ [1.0, 3.33) × [1.5, 3.5) × [2.1, 2.9]
...

D(11) ≡ [5.67, 8.0] × [3.5, 5.5] × [1.3, 2.1)

D(12) ≡ [5.67, 8.0] × [3.5, 5.5] × [2.1, 2.9] (25)

– Determine the training nodes appearing in each element of this cartesian product
set, that is, the nodes appearing in each subdomain.

(3.0, 2.5, 1.3, 32.2) ∈ D(1), . . . , (4.0, 2.5, 2.2, 56) ∈ D(6), . . . ,

(4.0, 4.5, 2.2, 88) ∈ D(8), . . . , (6.0, 3.5, 2.9, 122.85) ∈ D(12) (26)

– Define the auxiliary weight function as given in (19) for each subdomain.

Ω(x1, . . . , xN )(1) = 0.267857142857143125, . . . ,

Ω(x1, . . . , xN )(7) = 0.267857142857141875, . . . (27)
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– Evaluate α values as given in (14) for each subdomain. In this work, we set α

values equal in the related subdomain.

α
(1)
1 = · · · = α

(1)
8 = 0.466666666666666

α
(2)
1 = · · · = α

(2)
8 = 0.466666666666666

...

α
(11)
1 = · · · = α

(11)
3 = 1.24444444444444

α
(12)
1 = · · · = α

(12)
5 = 0.746666666666666 (28)

Here the superscripts in αs stand for the subdomain number. The subscripts are
the indices of the training nodes appearing in that subdomain. That is, we have an
α value for each node of that subdomain.

– Determine a constant value for each subdomain by using the relation (15).

f (1)
0 = 21.475, f (2)

0 = 26.99375, . . . ,

f (11)
0 = 94.7666666667, f (12)

0 = 153.05 (29)

– Evaluate the arithmetic means of the values that each independent variable takes
in the corresponding subdomain and construct a data set as given in (20).

(1.9545454546, 1.9516129032, 1.425, 21.475) ,

(1.9545454546, 1.9516129032, 2.4818181818, 26.99375) ,

...

(7.1052631579, 4.5408163265, 1.425, 94.7666666667) ,

(7.1052631579, 4.5408163265, 2.4818181818, 153.05) (30)

There exist 12 nodes in this set since there are 12 subdomains.
– Interpolate these nodes to construct an analytical structure for the given data mod-

elling problem.
– The arithmetic means of relative error values obtained for 30 randomly constructed

problems by using the testing function given in (21) are as follows

T raining Part �⇒ Ns0 = 0.1095142846, Ns1 = 0.1425208816

T esting Part �⇒ Ns0 = 0.1096262314, Ns1 = 0.1697872029 (31)

where s0 and s1 stand for constant Piecewise Generalized HDMR approximant and
univariate Generalized HDMR approximant, respectively. The reason to run the
random problem producing process 30 times is to examine the general tendency of
these two methods for this type of an analytical structure which has a hybrid nature.
It is clearly seen that our new method works better than the classical Generalized
HDMR method, which is composed of univariate components, even when we use
the constant approximation here.
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6 Numerical implementations

In this section, several numerical implementations are constructed through a number
of testing functions to examine the performance of the proposed method of this work.
To obtain the numerical results, Perl programming language [27] is used to prepare
the given multivariate data set and the related subdomains to be used in the Piece-
wise Generalized HDMR algorithm and to evaluate the constant component in each
subdomain while MuPAD [26] is used for multivariate interpolation. The evaluations
done through both Perl and MuPAD are within 15-digits precision while the numerical
results are given to within 10-digits precision for simplicity.

The selected multivariate testing functions are as follows

f1(x1, . . . , x5) =
5∑

i=1
xi , f2(x1, . . . , x5) =

[
5∑

i=1
xi

]3

,

f3(x1, . . . , x5) =
[

5∑
i=1

xi

]5

, f4(x1, . . . , x5) =
5∏

i=1
xi ,

f5(x1, . . . , x5) = e

(
5∑

i=1
xi

)

, f6(x1, . . . , x5) = log

(
5∑

i=1
xi

)
,

f7(x1, . . . , x5) = cos

(
π

5∑
i=1

xi

)
, f8(x1, . . . , x5) = cos

(
π

5∑
i=1

(−1)i+1xi

)
,

f9(x1, . . . , x5) = sin

(
π

5∑
i=1

xi

)
, f10(x1, . . . , x5) = sin

(
π

5∑
i=1

(−1)i+1xi

)

(32)

where there exist 5 independent variables in each testing function. The testing functions
have polynomial, exponential, logarithmic and trigonometric natures. In addition, the
domains consisting of real values are defined as follows

ξ1 ∈ {0.11, 0.20, 0.28, 0.31} , ξ2 ∈ {0.21, 0.25, 0.40, 0.45, 0.50} ,

ξ3 ∈ {0.33, 0.36, 0.39, 0.44, 0.49} , ξ4 ∈ {0.05, 0.09, 0.12, 0.17, 0.22, 0.27} ,

ξ5 ∈ {0.35, 0.47, 0.52, 0.56, 0.64, 0.68, 0.72, 0.77} (33)

Here, the whole grid of this type of problem includes 4,800 nodes while we assume
that we know the function values at 1,000 of them and to examine the performance of
our new method we construct a training data set and a testing data set having 800 and
200 nodes, respectively. The nodes of both training and testing data sets are selected
randomly through a Perl script written by the authors.

The number of subintervals of each independent variable are selected as 2 and this
results in 32 subdomains for each modelling problem since each has 5 independent
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Table 1 The best relative error values of the approximants for the testing functions

Training part Testing part

Ns0 Ns1 Ns0 Ns1

f1 0.0109919219 0.0 0.0112274833 0.0

f2 0.0325112908 0.0388924534 0.0336871316 0.0476513996

f3 0.0596076556 0.1078946643 0.0647403980 0.1474977725

f4 0.0611614189 0.2407281089 0.0653195357 0.2766371114

f5 0.0185261244 0.0225271274 0.0191496923 0.0260201576

f6 0.0184182533 0.0151683960 0.0202359248 0.0186316009

f7 0.0905035636 0.1625787772 0.1024028999 0.2005737889

f8 0.1010035060 0.1600716107 0.1100409221 0.1856552323

f9 0.1038960737 0.2322699389 0.1108429075 0.2344865627

f10 0.1048591760 0.2203229438 0.1050227575 0.2438759154

variables. The number of nodes appearing in subdomains effect the performance of
our new method since subdomains having nodes in a sparse structure cause unaccept-
able approximations through Piecewise Generalized HDMR. Hence, it is important to
specify an appropriate subinterval number for each independent variable. This work
does not include any predefined subinterval specification process in the proposed algo-
rithm. A decision mechanism definition for this topic is left as future work, that is, in
this work, this specification process is executed through the experiences learned from
several numerical implementations.

The performance of the constant Piecewise Generalized HDMR approximation is
compared with the univariate Generalized HDMR approximation since the aim of
this work is to use only the constant component in Piecewise Generalized HDMR
and we can use at most univariate components in the modelling process through the
Generalized HDMR method. For this purpose, 30 different modelling problems are
constructed randomly for each multivariate testing function.

Table 1 includes the best relative error values obtained through the constant Piece-
wise Generalized HDMR approximant, s0, and the univariate Generalized HDMR
approximant, s1 for the training and the testing parts of the problem, respectively.
The boldface highlighted values in Table 1 stand for the best result obtained for the
multivariate problem under consideration.

Table 2 consists of arithmetic means of relative error values obtained through 30
randomly constructed modelling problems. The results of Table 2 are given for the
training and the testing parts obtained through the constant Piecewise Generalized
HDMR and the univariate Generalized HDMR approximations. The best results are
given in bold.

When these two tables, Tables 1 and 2 are examined, it is clearly seen that our
new method works better than the older one for almost all testing functions except
functions having purely additive or logarithmic nature. This means that now we have
the ability of bypassing the disadvantages of classical Generalized HDMR method
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Table 2 Arithmetic means of relative error values obtained for randomly constructed 30 multivariate
problems

Training part Testing part

Ns0 Ns1 Ns0 Ns1

f1 0.0136005169 0.0 0.0149067626 0.0

f2 0.0442491193 0.0479828619 0.0451884669 0.0543374863

f3 0.0840845905 0.1374036419 0.0889496653 0.1547915059

f4 0.0849817164 0.2779633469 0.0920292074 0.2903352615

f5 0.0254465190 0.0255362150 0.0267617939 0.0277463250

f6 0.0264971042 0.0180839432 0.0269884863 0.0205135060

f7 0.1175592924 0.2014863179 0.1179943688 0.2162797644

f8 0.1143780378 0.1957304465 0.1390591119 0.2306487978

f9 0.1145178785 0.2640597012 0.1289285875 0.2675223927

f10 0.1136234318 0.2425035407 0.1174034322 0.3017587626

Table 3 Standard deviations of relative error values obtained for randomly constructed 30 multivariate
problems

Training part Testing part

σs0 σs1 σs0 σs1

f1 0.0017210622 0.0 0.0022270719 0.0

f2 0.0047254780 0.0046854751 0.0080472807 0.0021862020

f3 0.0121135434 0.0105582739 0.0153428464 0.0043137058

f4 0.0172878899 0.0183765665 0.0202931827 0.0089198164

f5 0.0035788492 0.0015314992 0.0047565953 0.0011041052

f6 0.0039544633 0.0013622409 0.0030395826 0.0008066659

f7 0.0130928187 0.0220949536 0.0082133786 0.0112058423

f8 0.0078205979 0.0131263630 0.0172688205 0.0254884261

f9 0.0069457151 0.0096310899 0.0113841212 0.0189647284

f10 0.0045294470 0.0090307162 0.0081369943 0.0243044198

coming from the determination process of univariate components which stands for
finding a unique solution for a linear equation system.

The results given in Table 3 correspond to standard deviation of relative error values
obtained in each modelling problem and they show us that the relative error values
obtained for 30 randomly constructed modelling problems are very close to each other
since the standard deviation values are very close to 0. That is, our proposed method
works stable. In addition, besides reducing the mathematical complexity of General-
ized HDMR, we reduce the CPU time needed to complete the modelling process.

Table 4 shows us these CPU times in seconds. It is clear that our new method works
faster than the classical Generalized HDMR method. This difference in the speed of
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Table 4 CPU time in seconds needed to complete the modelling of each mutivariate modelling problem
through Piecewise generalized HDMR and generalized HDMR

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ts0 1.323 1.336 1.336 1.338 1.343 1.340 1.348 1.344 1.378 1.352

ts1 4.504 4.567 4.588 4.546 4.523 4.561 4.543 4.572 4.526 4.542

Table 5 Numerical results for the testing function, f11(x1, . . . , x6)

Training part Testing part CPU time

Ns0 Ns1 Ns0 Ns1 ts0 ts1

Case 1 0.0424525867 0.1631813850 0.0433984293 0.1646072780 17.731 96.740

Case 2 0.0249888157 0.1619353364 0.0278418769 0.1626710704 34.634 351.359

these two methods can be better observed for the following testing function.

f11(x1, . . . , x6) =
6∏

i=1
xi , 1.5 < x1 < 2.0, 2.5 < x2 < 3.0,

5.0 < x3 < 10.0, 0.5 < x4 < 1.0, 0.5 < x5 < 4.5, 0.1 < x6 < 0.4 (34)

There are two cases for this testing function having 6 independent variables. The
first case consists of 5,000 training nodes and 2,000 testing nodes while the second
case includes 10,000 training nodes and 4,000 testing nodes. The numerical results
are given in Table 5. The best relative error values of the table are bold highlighted. It
is seen that the best results are obtained through Piecewise Generalized HDMR. The
CPU time needed to model a multivariate data modelling problem having huge num-
ber of training nodes through the Piecewise Generalized HDMR method is extremely
much less than the one obtained through the classical Generalized HDMR method.

7 Concluding remarks

Generalized HDMR is an HDMR based divide-and-conquer method which aims to
partition the given multivariate data set into a number of univariate data sets with a
constant component and to obtain an approximate analytical structure through these
partitioned data sets including the constant value for the multivariate data modelling
problem that is under consideration. However, this data partitioning process through
Generalized HDMR consists of a system of linear equations which has sometimes
linearly dependent equations arising from the nature of the given data modelling prob-
lem. This results in an inability to find a unique solution for such a system. In addition,
when the number of unknowns and equations increase rapidly, the CPU time needed
to solve that system increases.

The purpose of this work is to develop a new method which has the ability to get
rid of solving a linear equation system. This means that we have to bypass using the
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univariate components of the HDMR expansion, that is, the constant component of the
expansion is the only chance for approximating the multivariate problem. In addition,
we know that a constant value cannot represent a multivariate function itself.

This work offers a new Generalized HDMR based method and this new algorithm
uses only the constant component to construct an analytical model. Our new method
splits the given problem domain into subdomains by creating subintervals for each
independent variable’s interval. Evaluating the constant component in each subdo-
main constructs an interpolation problem for the whole domain of the problem. In
this work, MuPAD’s interpolate command gives us the resulting analytical structure
for the given multivariate data modelling problem. The relative error results given in
both the computational procedure and the numerical implementations sections show
us that the proposed method of this manuscript almost always works better than the
classical Generalized HDMR method even when we are using only the constant com-
ponent in our new method.

Splitting procedure of the interval of each independent variable, which includes the
possible values that the related independent variable can take, is an important step of
the Piecewise Generalized HDMR algorithm. Selecting correct number of subinter-
vals for each independent variable’s domain effects the performance of the method.
In this work, we select the subinterval numbers by looking at the length of each inter-
val. Each subdomain should have nearly equal number of nodes with respect to other
subdomains to evaluate each subdomain’s constant component efficiently. A criterion
or an optimization process can be defined for this process as a future work.

Finally, the numerical results show us that we now have a new algorithm that
bypasses the disadvantages of the Generalized HDMR method in terms of mathemat-
ical complexity and CPU time needed to complete the modelling process.
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